
Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Curious Course on
Coroutines and Concurrency

David Beazley
http://www.dabeaz.com

Presented at PyCon'2009, Chicago, Illinois

1

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

This Tutorial

2

• A mondo exploration of Python coroutines

mondo:
1. Extreme in degree or nature.
(http://www.urbandictionary.com)

2. An instructional technique of Zen Buddhism
consisting of rapid dialogue of questions and
answers between master and pupil. (Oxford
English Dictionary, 2nd Ed)

• You might want to brace yourself...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Requirements

3

• You need Python 2.5 or newer

• No third party extensions

• We're going to be looking at a lot of code

http://www.dabeaz.com/coroutines/

• Go there and follow along with the examples

• I will indicate file names as appropriate

sample.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

High Level Overview

4

• What in the heck is a coroutine?

• What can you use them for?

• Should you care?

• Is using them even a good idea?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Pictorial Overview

5

Head Explosion Index

You are
here

G
en

er
at
or

s

Killer
Joke

In
tr
o

to
 C

or
ou

tin
es

So
m
e
D
at
a
Pr

oc
es

sin
g

Ev
en

t H
an

dl
in
g

M
ix
 in

 S
om

e T
hr

ea
ds

End

C
or

ou
tin

es
 a
s T

as
ks

W
rit

e
a
m
ul
tit

as
ki
ng

op
er

at
in
g
sy

st
em

Throbbing
Headache

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

About Me

6

• I'm a long-time Pythonista

• Author of the Python Essential Reference
(look for the 4th edition--shameless plug)

• Created several packages (Swig, PLY, etc.)

• Currently a full-time Python trainer

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Background

7

• I'm an unabashed fan of generators and
generator expressions (Generators Rock!)

• See "Generator Tricks for Systems
Programmers" from PyCon'08

• http://www.dabeaz.com/generators

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines and Generators

8

• In Python 2.5, generators picked up some
new features to allow "coroutines" (PEP-342).

• Most notably: a new send() method

• If Python books are any guide, this is the most
poorly documented, obscure, and apparently
useless feature of Python.

• "Oooh. You can now send values into
generators producing fibonacci numbers!"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Uses of Coroutines

9

• Coroutines apparently might be possibly
useful in various libraries and frameworks

"It's all really quite simple. The toelet is connected to
the footlet, and the footlet is connected to the

anklelet, and the anklelet is connected to the leglet,
and the is leglet connected to the is thighlet, and the
thighlet is connected to the hiplet, and the is hiplet

connected to the backlet, and the backlet is
connected to the necklet, and the necklet is

connected to the headlet, and ?????? profit!"

• Uh, I think my brain is just too small...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Disclaimers

10

• Coroutines - The most obscure Python feature?

• Concurrency - One of the most difficult topics
in computer science (usually best avoided)

• This tutorial mixes them together

• It might create a toxic cloud

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

More Disclaimers

11

• As a programmer of the 80s/90s, I've never used
a programming language that had coroutines--
until they showed up in Python

• Most of the groundwork for coroutines
occurred in the 60s/70s and then stopped in
favor of alternatives (e.g., threads, continuations)

• I want to know if there is any substance to the
renewed interest in coroutines that has been
occurring in Python and other languages

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Even More Disclaimers

12

• I'm a neutral party

• I didn't have anything to do with PEP-342

• I'm not promoting any libraries or frameworks

• I have no religious attachment to the subject

• If anything, I'm a little skeptical

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Final Disclaimers

13

• This tutorial is not an academic presentation

• No overview of prior art

• No theory of programming languages

• No proofs about locking

• No Fibonacci numbers

• Practical application is the main focus

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Details

14

• There are some later performance numbers

• Python 2.6.1 on OS X 10.4.11

• All tests were conducted on the following:

• Mac Pro 2x2.66 Ghz Dual-Core Xeon

• 3 Gbytes RAM

• Timings are 3-run average of 'time' command

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part I

15

Introduction to Generators and Coroutines

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators
• A generator is a function that produces a

sequence of results instead of a single value

16

def countdown(n):
 while n > 0:
 yield n
 n -= 1

>>> for i in countdown(5):
... print i,
...
5 4 3 2 1
>>>

• Instead of returning a value, you generate a
series of values (using the yield statement)

• Typically, you hook it up to a for-loop

countdown.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators

17

• Behavior is quite different than normal func

• Calling a generator function creates an
generator object. However, it does not start
running the function.

def countdown(n):
 print "Counting down from", n
 while n > 0:
 yield n
 n -= 1

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>>

Notice that no
output was
produced

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Functions

• The function only executes on next()
>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>> x.next()
Counting down from 10
10
>>>

• yield produces a value, but suspends the function

• Function resumes on next call to next()
>>> x.next()
9
>>> x.next()
8
>>>

Function starts
executing here

18

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Functions

• When the generator returns, iteration stops

>>> x.next()
1
>>> x.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

19

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Practical Example

• A Python version of Unix 'tail -f'

20

import time
def follow(thefile):
 thefile.seek(0,2) # Go to the end of the file
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 yield line

• Example use : Watch a web-server log file

logfile = open("access-log")
for line in follow(logfile):
 print line,

follow.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators as Pipelines

• One of the most powerful applications of
generators is setting up processing pipelines

• Similar to shell pipes in Unix

21

generator
input
sequence

for x in s:generator generator

• Idea: You can stack a series of generator
functions together into a pipe and pull items
through it with a for-loop

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Pipeline Example
• Print all server log entries containing 'python'

22

def grep(pattern,lines):
 for line in lines:
 if pattern in line:
 yield line

Set up a processing pipe : tail -f | grep python
logfile = open("access-log")
loglines = follow(logfile)
pylines = grep("python",loglines)

Pull results out of the processing pipeline
for line in pylines:
 print line,

• This is just a small taste

pipeline.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Yield as an Expression

• In Python 2.5, a slight modification to the yield
statement was introduced (PEP-342)

• You could now use yield as an expression

• For example, on the right side of an assignment

23

def grep(pattern):
 print "Looking for %s" % pattern
 while True:
 line = (yield)
 if pattern in line:
 print line,

• Question : What is its value?

grep.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines

• If you use yield more generally, you get a coroutine

• These do more than just generate values

• Instead, functions can consume values sent to it.

24

>>> g = grep("python")
>>> g.next() # Prime it (explained shortly)
Looking for python
>>> g.send("Yeah, but no, but yeah, but no")
>>> g.send("A series of tubes")
>>> g.send("python generators rock!")
python generators rock!
>>>

• Sent values are returned by (yield)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Execution

• Execution is the same as for a generator

• When you call a coroutine, nothing happens

• They only run in response to next() and send()
methods

25

>>> g = grep("python")
>>> g.next()
Looking for python
>>>

Notice that no
output was
produced

On first operation,
coroutine starts

running

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Priming
• All coroutines must be "primed" by first

calling .next() (or send(None))

• This advances execution to the location of the
first yield expression.

26

.next() advances the
coroutine to the

first yield expression

def grep(pattern):

 print "Looking for %s" % pattern

 while True:

 line = (yield)
 if pattern in line:
 print line,

• At this point, it's ready to receive a value

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using a Decorator

• Remembering to call .next() is easy to forget

• Solved by wrapping coroutines with a decorator

27

def coroutine(func):
 def start(*args,**kwargs):
 cr = func(*args,**kwargs)
 cr.next()
 return cr
 return start

@coroutine
def grep(pattern):
 ...

• I will use this in most of the future examples

coroutine.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Closing a Coroutine

• A coroutine might run indefinitely

• Use .close() to shut it down

28

>>> g = grep("python")
>>> g.next() # Prime it
Looking for python
>>> g.send("Yeah, but no, but yeah, but no")
>>> g.send("A series of tubes")
>>> g.send("python generators rock!")
python generators rock!
>>> g.close()

• Note: Garbage collection also calls close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Catching close()
• close() can be caught (GeneratorExit)

29

• You cannot ignore this exception

• Only legal action is to clean up and return

@coroutine
def grep(pattern):
 print "Looking for %s" % pattern
 try:
 while True:
 line = (yield)
 if pattern in line:
 print line,
 except GeneratorExit:
 print "Going away. Goodbye"

grepclose.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Throwing an Exception
• Exceptions can be thrown inside a coroutine

30

>>> g = grep("python")
>>> g.next() # Prime it
Looking for python
>>> g.send("python generators rock!")
python generators rock!
>>> g.throw(RuntimeError,"You're hosed")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in grep
RuntimeError: You're hosed
>>>

• Exception originates at the yield expression

• Can be caught/handled in the usual ways

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

• Despite some similarities, Generators and
coroutines are basically two different concepts

• Generators produce values

• Coroutines tend to consume values

• It is easy to get sidetracked because methods
meant for coroutines are sometimes described as
a way to tweak generators that are in the process
of producing an iteration pattern (i.e., resetting its
value). This is mostly bogus.

31

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Bogus Example

32

def countdown(n):
 print "Counting down from", n
 while n >= 0:
 newvalue = (yield n)
 # If a new value got sent in, reset n with it
 if newvalue is not None:
 n = newvalue
 else:
 n -= 1

• A "generator" that produces and receives values

• It runs, but it's "flaky" and hard to understand

c = countdown(5)
for n in c:
 print n
 if n == 5:
 c.send(3)

Notice how a value
got "lost" in the

iteration protocol

bogus.py

5
2
1
0

output

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Keeping it Straight

33

• Generators produce data for iteration

• Coroutines are consumers of data

• To keep your brain from exploding, you don't mix
the two concepts together

• Coroutines are not related to iteration

• Note : There is a use of having yield produce a
value in a coroutine, but it's not tied to iteration.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 2

34

Coroutines, Pipelines, and Dataflow

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Processing Pipelines

35

• Coroutines can be used to set up pipes

coroutine coroutine coroutine
send() send() send()

• You just chain coroutines together and push
data through the pipe with send() operations

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Sources

36

• The pipeline needs an initial source (a producer)

coroutine
send() send()

source

• The source drives the entire pipeline

def source(target):
 while not done:
 item = produce_an_item()
 ...
 target.send(item)
 ...
 target.close()

• It is typically not a coroutine

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Sinks

37

• The pipeline must have an end-point (sink)

coroutine
send() send()

• Collects all data sent to it and processes it

@coroutine
def sink():
 try:
 while True:
 item = (yield) # Receive an item

 ...
 except GeneratorExit: # Handle .close()

 # Done
 ...

sink

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

38

• A source that mimics Unix 'tail -f'
import time
def follow(thefile, target):
 thefile.seek(0,2) # Go to the end of the file
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 target.send(line)

• A sink that just prints the lines
@coroutine
def printer():
 while True:
 line = (yield)
 print line,

cofollow.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

39

• Hooking it together
f = open("access-log")
follow(f, printer())

follow()
send()

printer()

• A picture

• Critical point : follow() is driving the entire
computation by reading lines and pushing them
into the printer() coroutine

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Filters

40

• Intermediate stages both receive and send

coroutine
send() send()

• Typically perform some kind of data
transformation, filtering, routing, etc.

@coroutine
def filter(target):
 while True:
 item = (yield) # Receive an item

 # Transform/filter item
 ...
 # Send it along to the next stage
 target.send(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Filter Example

41

• A grep filter coroutine
@coroutine
def grep(pattern,target):
 while True:
 line = (yield) # Receive a line
 if pattern in line:
 target.send(line) # Send to next stage

• Hooking it up
f = open("access-log")
follow(f,
 grep('python',
 printer()))

follow() grep() printer()
send() send()

• A picture

copipe.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

42

• Coroutines flip generators around

generator
input
sequence

for x in s:generator generator

source coroutine coroutine
send() send()

generators/iteration

coroutines

• Key difference. Generators pull data through
the pipe with iteration. Coroutines push data
into the pipeline with send().

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Being Branchy

43

• With coroutines, you can send data to multiple
destinations

source coroutine

coroutine

send() send()

• The source simply "sends" data. Further routing
of that data can be arbitrarily complex

coroutine

coroutinesend()

send()

coroutine

send()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

44

• Broadcast to multiple targets
@coroutine
def broadcast(targets):
 while True:
 item = (yield)
 for target in targets:
 target.send(item)

• This takes a sequence of coroutines (targets)
and sends received items to all of them.

cobroadcast.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

45

• Example use:

f = open("access-log")
follow(f,
 broadcast([grep('python',printer()),
 grep('ply',printer()),
 grep('swig',printer())])
)

follow broadcast

printer()grep('python')

grep('ply')

grep('swig') printer()

printer()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

46

• A more disturbing variation...
f = open("access-log")
p = printer()
follow(f,
 broadcast([grep('python',p),
 grep('ply',p),
 grep('swig',p)])
)

follow broadcast

grep('python')

grep('ply')

grep('swig')

printer()

cobroadcast2.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

47

• Coroutines provide more powerful data routing
possibilities than simple iterators

• If you built a collection of simple data processing
components, you can glue them together into
complex arrangements of pipes, branches,
merging, etc.

• Although there are some limitations (later)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Digression

48

• In preparing this tutorial, I found myself wishing
that variable assignment was an expression

@coroutine
def printer():
 while True:
 line = (yield)
 print line,

@coroutine
def printer():
 while (line = yield):
 print line,

vs.

• However, I'm not holding my breath on that...

• Actually, I'm expecting to be flogged with a
rubber chicken for even suggesting it.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines vs. Objects

49

• Coroutines are somewhat similar to OO design
patterns involving simple handler objects
class GrepHandler(object):
 def __init__(self,pattern, target):
 self.pattern = pattern
 self.target = target
 def send(self,line):
 if self.pattern in line:
 self.target.send(line)

@coroutine
def grep(pattern,target):
 while True:
 line = (yield)
 if pattern in line:
 target.send(line)

• The coroutine version

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines vs. Objects

50

• There is a certain "conceptual simplicity"

• A coroutine is one function definition

• If you define a handler class...

• You need a class definition

• Two method definitions

• Probably a base class and a library import

• Essentially you're stripping the idea down to the
bare essentials (like a generator vs. iterator)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines vs. Objects

51

• Coroutines are faster

• A micro benchmark
@coroutine
def null():
 while True: item = (yield)

line = 'python is nice'
p1 = grep('python',null()) # Coroutine
p2 = GrepHandler('python',null()) # Object

• Send in 1,000,000 lines

timeit("p1.send(line)",

 "from __main__ import line,p1")

timeit("p2.send(line)",

 "from __main__ import line,p2")

0.60 s

0.92 s

benchmark.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines & Objects

52

• Understanding the performance difference

class GrepHandler(object):
 ...
 def send(self,line):
 if self.pattern in line:
 self.target.send(line)

@coroutine
def grep(pattern, target):
 while True:
 line = (yield)
 if pattern in line:
 target.send(d)

• Look at the coroutine

Look at these self lookups!

"self" free

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 3

53

Coroutines and Event Dispatching

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Handling

54

• Coroutines can be used to write various
components that process event streams

• Let's look at an example...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Problem

55

• Where is my ^&#&@* bus?

• Chicago Transit Authority (CTA) equips most
of its buses with real-time GPS tracking

• You can get current data on every bus on the
street as a big XML document

• Use "The Google" to search for details...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some XML

56

<?xml version="1.0"?>
 <buses>
 <bus>
 !! <id>7574</id>
 !! <route>147</route>
 !! <color>#3300ff</color>
 !! <revenue>true</revenue>
 !! <direction>North Bound</direction>
 !! <latitude>41.925682067871094</latitude>
 !<longitude>-87.63092803955078</longitude>
 !<pattern>2499</pattern>
 !<patternDirection>North Bound</patternDirection>
 ! <run>P675</run>
 <finalStop><![CDATA[Paulina & Howard Terminal]]></finalStop>
 <operator>42493</operator>
 </bus>
 <bus>
 ...
 </bus>
 </buses>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

XML Parsing

57

• There are many possible ways to parse XML

• An old-school approach: SAX

• SAX is an event driven interface

XML Parser
events

Handler Object

class Handler:
 def startElement():
 ...
 def endElement():
 ...
 def characters():
 ...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Minimal SAX Example

58

• You see this same programming pattern in
other settings (e.g., HTMLParser module)

import xml.sax

class MyHandler(xml.sax.ContentHandler):
 def startElement(self,name,attrs):
 print "startElement", name
 def endElement(self,name):
 print "endElement", name
 def characters(self,text):
 print "characters", repr(text)[:40]

xml.sax.parse("somefile.xml",MyHandler())

basicsax.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Issues

59

• SAX is often used because it can be used to
incrementally process huge XML files without
a large memory footprint

• However, the event-driven nature of SAX
parsing makes it rather awkward and low-level
to deal with

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

From SAX to Coroutines

60

• You can dispatch SAX events into coroutines

• Consider this SAX handler
import xml.sax

class EventHandler(xml.sax.ContentHandler):
 def __init__(self,target):
 self.target = target
 def startElement(self,name,attrs):
 self.target.send(('start',(name,attrs._attrs)))
 def characters(self,text):
 self.target.send(('text',text))
 def endElement(self,name):
 self.target.send(('end',name))

• It does nothing, but send events to a target

cosax.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Event Stream

61

• The big picture

SAX Parser
events

Handler (event,value)

('direction',{})
'direction'
'North Bound'

'start'
'end'
'text'

Event type Event values

send()

• Observe : Coding this was straightforward

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Processing

62

• To do anything interesting, you have to
process the event stream

• Example: Convert bus elements into
dictionaries (XML sucks, dictionaries rock)

 <bus>
 !! <id>7574</id>
 !! <route>147</route>
 !! <revenue>true</revenue>
 !! <direction>North Bound</direction>
 !! ...
 </bus>

{
 'id' : '7574',
 'route' : '147',
 'revenue' : 'true',
 'direction' : 'North Bound'
 ...
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buses to Dictionaries

63

@coroutine
def buses_to_dicts(target):
 while True:
 event, value = (yield)
 # Look for the start of a <bus> element
 if event == 'start' and value[0] == 'bus':
 busdict = { }
 fragments = []
 # Capture text of inner elements in a dict
 while True:
 event, value = (yield)
 if event == 'start': fragments = []
 elif event == 'text': fragments.append(value)
 elif event == 'end':
 if value != 'bus':
 busdict[value] = "".join(fragments)
 else:
 target.send(busdict)
 break

buses.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

State Machines

64

• The previous code works by implementing a
simple state machine

A B
('start',('bus',*))

('end','bus')

• State A: Looking for a bus

• State B: Collecting bus attributes

• Comment : Coroutines are perfect for this

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buses to Dictionaries

65

@coroutine
def buses_to_dicts(target):
 while True:
 event, value = (yield)
 # Look for the start of a <bus> element
 if event == 'start' and value[0] == 'bus':
 busdict = { }
 fragments = []
 # Capture text of inner elements in a dict
 while True:
 event, value = (yield)
 if event == 'start': fragments = []
 elif event == 'text': fragments.append(value)
 elif event == 'end':
 if value != 'bus':
 busdict[value] = "".join(fragments)
 else:
 target.send(busdict)
 break

A

B

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Filtering Elements

66

• Let's filter on dictionary fields

@coroutine
def filter_on_field(fieldname,value,target):
 while True:
 d = (yield)
 if d.get(fieldname) == value:
 target.send(d)

• Examples:
filter_on_field("route","22",target)
filter_on_field("direction","North Bound",target)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Processing Elements

67

• Where's my bus?

@coroutine
def bus_locations():
 while True:
 bus = (yield)
 print "%(route)s,%(id)s,\"%(direction)s\","\
 "%(latitude)s,%(longitude)s" % bus

• This receives dictionaries and prints a table

22,1485,"North Bound",41.880481123924255,-87.62948191165924
22,1629,"North Bound",42.01851969751819,-87.6730209876751
...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Hooking it Together

68

• Find all locations of the North Bound #22 bus
(the slowest moving object in the universe)

xml.sax.parse("allroutes.xml",
 EventHandler(
 buses_to_dicts(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations())))
))

• This final step involves a bit of plumbing, but
each of the parts is relatively simple

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

How Low Can You Go?

69

• I've picked this XML example for reason

• One interesting thing about coroutines is that
you can push the initial data source as low-
level as you want to make it without rewriting
all of the processing stages

• Let's say SAX just isn't quite fast enough...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

XML Parsing with Expat

70

• Let's strip it down....

import xml.parsers.expat

def expat_parse(f,target):
 parser = xml.parsers.expat.ParserCreate()
 parser.buffer_size = 65536
 parser.buffer_text = True
 parser.returns_unicode = False
 parser.StartElementHandler = \
 lambda name,attrs: target.send(('start',(name,attrs)))
 parser.EndElementHandler = \
 lambda name: target.send(('end',name))
 parser.CharacterDataHandler = \
 lambda data: target.send(('text',data))
 parser.ParseFile(f)

• expat is low-level (a C extension module)

coexpat.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

71

• SAX version (on a 30MB XML input)
xml.sax.parse("allroutes.xml",EventHandler(
 buses_to_dicts(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations())))))

• Expat version
expat_parse(open("allroutes.xml"),
 buses_to_dicts(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations()))))

8.37s

4.51s

(83% speedup)

• No changes to the processing stages

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Going Lower

72

• You can even drop send() operations into C

• A skeleton of how this works...
PyObject *
py_parse(PyObject *self, PyObject *args) {
 PyObject *filename;
 PyObject *target;
 PyObject *send_method;
if (!PyArg_ParseArgs(args,"sO",&filename,&target)) {
 return NULL;
}
send_method = PyObject_GetAttrString(target,"send");
...

/* Invoke target.send(item) */
args = Py_BuildValue("(O)",item);
result = PyEval_CallObject(send_meth,args);
...

cxml/cxmlparse.c

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

73

• Expat version
expat_parse(open("allroutes.xml"),
 buses_to_dicts(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations())))))

4.51s

• A custom C extension written directly on top
of the expat C library (code not shown)

cxmlparse.parse("allroutes.xml",
 buses_to_dicts(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations())))))

2.95s

(55% speedup)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

74

• ElementTree has fast incremental XML parsing

from xml.etree.cElementTree import iterparse

for event,elem in iterparse("allroutes.xml",('start','end')):
 if event == 'start' and elem.tag == 'buses':
 buses = elem
 elif event == 'end' and elem.tag == 'bus':
 busdict = dict((child.tag,child.text)
 for child in elem)
 if (busdict['route'] == '22' and
 busdict['direction'] == 'North Bound'):
 print "%(id)s,%(route)s,\"%(direction)s\","\
 "%(latitude)s,%(longitude)s" % busdict
 buses.remove(elem)

3.04s

• Observe: Coroutines are in the same range

iterbus.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 4

75

From Data Processing to Concurrent Programming

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Story So Far

76

• Coroutines are similar to generators

• You can create collections of small processing
components and connect them together

• You can process data by setting up pipelines,
dataflow graphs, etc.

• You can use coroutines with code that has
tricky execution (e.g., event driven systems)

• However, there is so much more going on...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Common Theme

77

• You send data to coroutines

• You send data to threads (via queues)

• You send data to processes (via messages)

• Coroutines naturally tie into problems
involving threads and distributed systems.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Basic Concurrency

78

• You can package coroutines inside threads or
subprocesses by adding extra layers

source coroutine

coroutine

coroutine

coroutine coroutine

Thread

Thread

Subprocess

Host

socket

pipe

queue

queue

• Will sketch out some basic ideas...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Threaded Target

79

@coroutine
def threaded(target):
 messages = Queue()
 def run_target():
 while True:
 item = messages.get()
 if item is GeneratorExit:
 target.close()
 return
 else:
 target.send(item)
 Thread(target=run_target).start()
 try:
 while True:
 item = (yield)
 messages.put(item)
 except GeneratorExit:
 messages.put(GeneratorExit)

cothread.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

@coroutine
def threaded(target):
 messages = Queue()

 def run_target():
 while True:
 item = messages.get()
 if item is GeneratorExit:
 target.close()
 return
 else:
 target.send(item)
 Thread(target=run_target).start()
 try:
 while True:
 item = (yield)
 messages.put(item)
 except GeneratorExit:
 messages.put(GeneratorExit)

A Threaded Target

80

A message queue

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

@coroutine
def threaded(target):
 messages = Queue()
 def run_target():
 while True:

 item = messages.get()

 if item is GeneratorExit:

 target.close()

 return

 else:

 target.send(item)

 Thread(target=run_target).start()

 try:
 while True:
 item = (yield)
 messages.put(item)
 except GeneratorExit:
 messages.put(GeneratorExit)

A Threaded Target

81

A thread. Loop
forever, pulling items
out of the message
queue and sending
them to the target

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

@coroutine
def threaded(target):
 messages = Queue()
 def run_target():
 while True:
 item = messages.get()
 if item is GeneratorExit:
 target.close()
 return
 else:
 target.send(item)
 Thread(target=run_target).start()
 try:
 while True:

 item = (yield)

 messages.put(item)

 except GeneratorExit:

 messages.put(GeneratorExit)

A Threaded Target

82

Receive items and
pass them into the

thread (via the queue)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

@coroutine
def threaded(target):
 messages = Queue()
 def run_target():
 while True:
 item = messages.get()
 if item is GeneratorExit:
 target.close()

 return

 else:
 target.send(item)
 Thread(target=run_target).start()
 try:
 while True:
 item = (yield)
 messages.put(item)
 except GeneratorExit:

 messages.put(GeneratorExit)

A Threaded Target

83

Handle close() so
that the thread shuts

down correctly

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Thread Example

84

• Example of hooking things up

xml.sax.parse("allroutes.xml", EventHandler(
 buses_to_dicts(
 threaded(
 filter_on_field("route","22",
 filter_on_field("direction","North Bound",
 bus_locations()))
))))

• A caution: adding threads makes this example
run about 50% slower.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Picture

85

• Here is an overview of the last example

xml.sax.parse

filter_on_field

Thread

EventHandler

buses_to_dicts

filter_on_field

bus_locations

Main Program

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Subprocess Target

86

• Can also bridge two coroutines over a file/pipe
@coroutine
def sendto(f):
 try:
 while True:
 item = (yield)
 pickle.dump(item,f)
 f.flush()
 except StopIteration:
 f.close()

def recvfrom(f,target):
 try:
 while True:
 item = pickle.load(f)
 target.send(item)
 except EOFError:
 target.close()

coprocess.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Subprocess Target

87

• High Level Picture

sendto()

pickle.dump()

recvfrom()

pickle.load()

pipe/socket

• Of course, the devil is in the details...

• You would not do this unless you can recover
the cost of the underlying communication
(e.g., you have multiple CPUs and there's
enough processing to make it worthwhile)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Implementation vs. Environ

88

• With coroutines, you can separate the
implementation of a task from its execution
environment

• The coroutine is the implementation

• The environment is whatever you choose
(threads, subprocesses, network, etc.)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Caution

89

• Creating huge collections of coroutines,
threads, and processes might be a good way to
create an unmaintainable application (although
it might increase your job security)

• And it might make your program run slower!

• You need to carefully study the problem to
know if any of this is a good idea

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Hidden Dangers

90

• The send() method on a coroutine must be
properly synchronized

• If you call send() on an already-executing
coroutine, your program will crash

• Example : Multiple threads sending data into
the same target coroutine

cocrash.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Limitations

91

• You also can't create loops or cycles

source coroutine
send() send()

coroutine

send()

• Stacked sends are building up a kind of call-stack
(send() doesn't return until the target yields)

• If you call a coroutine that's already in the
process of sending, you'll get an error

• send() doesn't suspend coroutine execution

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 5

92

Coroutines as Tasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Task Concept

93

• In concurrent programming, one typically
subdivides problems into "tasks"

• Tasks have a few essential features

• Independent control flow

• Internal state

• Can be scheduled (suspended/resumed)

• Can communicate with other tasks

• Claim : Coroutines are tasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Are Coroutines Tasks?

94

• Let's look at the essential parts

• Coroutines have their own control flow.
@coroutine
def grep(pattern):
 print "Looking for %s" % pattern
 while True:
 line = (yield)
 if pattern in line:
 print line,

statements

• A coroutine is just a sequence of statements like
any other Python function

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Are Coroutines Tasks?

95

• Coroutines have their internal own state

• For example : local variables
@coroutine
def grep(pattern):
 print "Looking for %s" % pattern
 while True:
 line = (yield)
 if pattern in line:
 print line,

locals

• The locals live as long as the coroutine is active

• They establish an execution environment

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Are Coroutines Tasks?

96

• Coroutines can communicate

• The .send() method sends data to a coroutine
@coroutine
def grep(pattern):
 print "Looking for %s" % pattern
 while True:
 line = (yield)
 if pattern in line:
 print line,

• yield expressions receive input

send(msg)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Are Coroutines Tasks?

97

• Coroutines can be suspended and resumed

• yield suspends execution

• send() resumes execution

• close() terminates execution

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

I'm Convinced

98

• Very clearly, coroutines look like tasks

• But they're not tied to threads

• Or subprocesses

• A question : Can you perform multitasking
without using either of those concepts?

• Multitasking using nothing but coroutines?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 6

99

A Crash Course in Operating Systems

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Program Execution

100

• On a CPU, a program is a series of instructions
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 movl $0, -12(%ebp)
 movl $0, -16(%ebp)
 jmp L2
L3:
 movl -16(%ebp), %eax
 leal -12(%ebp), %edx
 addl %eax, (%edx)
 leal -16(%ebp), %eax
 incl (%eax)
L2:
 cmpl $9, -16(%ebp)
 jle L3
 leave
 ret

int main() {
 int i, total = 0;
 for (i = 0; i < 10; i++)
 {
 total += i;
 }
}

• When running, there
is no notion of doing
more than one thing
at a time (or any kind
of task switching)

cc

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Multitasking Problem

101

• CPUs don't know anything about multitasking

• Nor do application programs

• Well, surely something has to know about it!

• Hint: It's the operating system

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Operating Systems

102

• As you hopefully know, the operating system
(e.g., Linux, Windows) is responsible for
running programs on your machine

• And as you have observed, the operating
system does allow more than one process to
execute at once (e.g., multitasking)

• It does this by rapidly switching between tasks

• Question : How does it do that?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Conundrum

103

• When a CPU is running your program, it is not
running the operating system

• Question: How does the operating system
(which is not running) make an application
(which is running) switch to another task?

• The "context-switching" problem...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interrupts and Traps

104

• There are usually only two mechanisms that an
operating system uses to gain control

• Interrupts - Some kind of hardware related
signal (data received, timer, keypress, etc.)

• Traps - A software generated signal

• In both cases, the CPU briefly suspends what it is
doing, and runs code that's part of the OS

• It is at this time the OS might switch tasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Traps and System Calls

105

• Low-level system calls are actually traps

• It is a special CPU instruction

read(fd,buf,nbytes) read:
 push %ebx
 mov 0x10(%esp),%edx
 mov 0xc(%esp),%ecx
 mov 0x8(%esp),%ebx
 mov $0x3,%eax
 int $0x80

 pop %ebx
 ...

trap
• When a trap instruction

executes, the program
suspends execution at
that point

• And the OS takes over

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

High Level Overview

106

• Traps are what make an OS work

• The OS drops your program on the CPU

• It runs until it hits a trap (system call)

• The program suspends and the OS runs

• Repeat

run run run run

trap trap trap

OS executes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Switching

107

• Here's what typically happens when an
OS runs multiple tasks.

run

trap

run

trap

run

trap

run

trap

trap

runTask A:

Task B:

task switch

• On each trap, the system switches to a
different task (cycling between them)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Scheduling

108

• To run many tasks, add a bunch of queues

task task task

Ready Queue

task task

CPU CPU

Running

task task

task

task task task

Wait Queues
Traps

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Insight

109

• The yield statement is a kind of "trap"

• No really!

• When a generator function hits a "yield"
statement, it immediately suspends execution

• Control is passed back to whatever code
made the generator function run (unseen)

• If you treat yield as a trap, you can build a
multitasking "operating system"--all in Python!

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 7

110

Let's Build an Operating System
(You may want to put on your 5-point safety harness)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Our Challenge

111

• Build a multitasking "operating system"

• Use nothing but pure Python code

• No threads

• No subprocesses

• Use generators/coroutines

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Motivation

112

• There has been a lot of recent interest in
alternatives to threads (especially due to the GIL)

• Non-blocking and asynchronous I/O

• Example: servers capable of supporting
thousands of simultaneous client connections

• A lot of work has focused on event-driven
systems or the "Reactor Model" (e.g., Twisted)

• Coroutines are a whole different twist...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 1: Define Tasks

113

• A task object
class Task(object):
 taskid = 0
 def __init__(self,target):
 Task.taskid += 1
 self.tid = Task.taskid # Task ID
 self.target = target # Target coroutine
 self.sendval = None # Value to send
 def run(self):
 return self.target.send(self.sendval)

• A task is a wrapper around a coroutine

• There is only one operation : run()

pyos1.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Example

114

• Here is how this wrapper behaves
A very simple generator
def foo():
 print "Part 1"
 yield
 print "Part 2"
 yield

>>> t1 = Task(foo()) # Wrap in a Task
>>> t1.run()
Part 1
>>> t1.run()
Part 2
>>>

• run() executes the task to the next yield (a trap)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

115

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)
 self.taskmap[newtask.tid] = newtask
 self.schedule(newtask)
 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 result = task.run()
 self.schedule(task)

pyos2.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

116

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)
 self.taskmap[newtask.tid] = newtask
 self.schedule(newtask)
 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 result = task.run()
 self.schedule(task)

A queue of tasks that
are ready to run

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

117

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)

 self.taskmap[newtask.tid] = newtask

 self.schedule(newtask)

 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 result = task.run()
 self.schedule(task)

Introduces a new task
to the scheduler

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

118

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)
 self.taskmap[newtask.tid] = newtask

 self.schedule(newtask)
 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 result = task.run()
 self.schedule(task)

A dictionary that
keeps track of all
active tasks (each
task has a unique
integer task ID)

(more later)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

119

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)
 self.taskmap[newtask.tid] = newtask
 self.schedule(newtask)
 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 result = task.run()
 self.schedule(task)

Put a task onto the
ready queue. This
makes it available

to run.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 2: The Scheduler

120

class Scheduler(object):
 def __init__(self):
 self.ready = Queue()
 self.taskmap = {}

 def new(self,target):
 newtask = Task(target)
 self.taskmap[newtask.tid] = newtask
 self.schedule(newtask)
 return newtask.tid

 def schedule(self,task):
 self.ready.put(task)

 def mainloop(self):
 while self.taskmap:

 task = self.ready.get()

 result = task.run()

 self.schedule(task)

The main scheduler
loop. It pulls tasks off the
queue and runs them to

the next yield.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

First Multitasking

121

• Two tasks:
def foo():
 while True:
 print "I'm foo"
 yield

def bar():
 while True:
 print "I'm bar"
 yield

• Running them into the scheduler

sched = Scheduler()
sched.new(foo())
sched.new(bar())
sched.mainloop()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

First Multitasking

122

• Example output:
I'm foo
I'm bar
I'm foo
I'm bar
I'm foo
I'm bar

• Emphasize: yield is a trap

• Each task runs until it hits the yield

• At this point, the scheduler regains control
and switches to the other task

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Problem : Task Termination

123

• The scheduler crashes if a task returns
def foo():
 for i in xrange(10):
 print "I'm foo"
 yield
...
I'm foo
I'm bar
I'm foo
I'm bar
Traceback (most recent call last):
 File "crash.py", line 20, in <module>
 sched.mainloop()
 File "scheduler.py", line 26, in mainloop
 result = task.run()
 File "task.py", line 13, in run
 return self.target.send(self.sendval)
StopIteration

taskcrash.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 3: Task Exit

124

class Scheduler(object):
 ...
 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

pyos3.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 3: Task Exit

125

class Scheduler(object):
 ...
 def exit(self,task):
 print "Task %d terminated" % task.tid

 del self.taskmap[task.tid]

 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

Remove the task
from the scheduler's

task map

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 3: Task Exit

126

class Scheduler(object):
 ...
 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()

 except StopIteration:

 self.exit(task)

 continue

 self.schedule(task)

Catch task exit and
cleanup

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Second Multitasking

127

• Two tasks:

def foo():
 for i in xrange(10):
 print "I'm foo"
 yield

def bar():
 for i in xrange(5):
 print "I'm bar"
 yield

sched = Scheduler()
sched.new(foo())
sched.new(bar())
sched.mainloop()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Second Multitasking

128

• Sample output
I'm foo
I'm bar
I'm foo
I'm bar
I'm foo
I'm bar
I'm foo
I'm bar
I'm foo
I'm bar
I'm foo
Task 2 terminated
I'm foo
I'm foo
I'm foo
I'm foo
Task 1 terminated

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

System Calls

129

• In a real operating system, traps are how
application programs request the services of
the operating system (syscalls)

• In our code, the scheduler is the operating
system and the yield statement is a trap

• To request the service of the scheduler, tasks
will use the yield statement with a value

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 4: System Calls

130

class SystemCall(object):
 def handle(self):
 pass

class Scheduler(object):
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 if isinstance(result,SystemCall):
 result.task = task
 result.sched = self
 result.handle()
 continue
 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

pyos4.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 4: System Calls

131

class SystemCall(object):

 def handle(self):

 pass

class Scheduler(object):
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 if isinstance(result,SystemCall):
 result.task = task
 result.sched = self
 result.handle()
 continue
 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

System Call base class.
All system operations

will be implemented by
inheriting from this class.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 4: System Calls

132

class SystemCall(object):
 def handle(self):
 pass

class Scheduler(object):
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 if isinstance(result,SystemCall):

 result.task = task

 result.sched = self

 result.handle()

 continue

 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

Look at the result
yielded by the task. If it's
a SystemCall, do some

setup and run the system
call on behalf of the task.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 4: System Calls

133

class SystemCall(object):
 def handle(self):
 pass

class Scheduler(object):
 ...
 def mainloop(self):
 while self.taskmap:
 task = self.ready.get()
 try:
 result = task.run()
 if isinstance(result,SystemCall):
 result.task = task
 result.sched = self

 result.handle()
 continue
 except StopIteration:
 self.exit(task)
 continue
 self.schedule(task)

These attributes hold
information about
the environment
(current task and

scheduler)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A First System Call

134

• Return a task's ID number

class GetTid(SystemCall):
 def handle(self):
 self.task.sendval = self.task.tid
 self.sched.schedule(self.task)

• The operation of this is little subtle
class Task(object):
 ...
 def run(self):
 return self.target.send(self.sendval)

• The sendval attribute of a task is like a return
value from a system call. It's value is sent into
the task when it runs again.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A First System Call

135

• Example of using a system call

def foo():
 mytid = yield GetTid()

 for i in xrange(5):
 print "I'm foo", mytid
 yield

def bar():
 mytid = yield GetTid()

 for i in xrange(10):
 print "I'm bar", mytid
 yield

sched = Scheduler()
sched.new(foo())
sched.new(bar())
sched.mainloop()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A First System Call

136

• Example output
I'm foo 1
I'm bar 2
I'm foo 1
I'm bar 2
I'm foo 1
I'm bar 2
I'm foo 1
I'm bar 2
I'm foo 1
I'm bar 2
Task 1 terminated
I'm bar 2
I'm bar 2
I'm bar 2
I'm bar 2
I'm bar 2
Task 2 terminated

Notice each task has
a different task id

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Design Discussion

137

• Real operating systems have a strong notion of
"protection" (e.g., memory protection)

• Application programs are not strongly linked
to the OS kernel (traps are only interface)

• For sanity, we are going to emulate this

• Tasks do not see the scheduler

• Tasks do not see other tasks

• yield is the only external interface

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 5: Task Management

138

• Let's make more some system calls

• Some task management functions

• Create a new task

• Kill an existing task

• Wait for a task to exit

• These mimic common operations with
threads or processes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Creating New Tasks

139

• Create a another system call
class NewTask(SystemCall):
 def __init__(self,target):
 self.target = target
 def handle(self):
 tid = self.sched.new(self.target)
 self.task.sendval = tid
 self.sched.schedule(self.task)

• Example use:
def bar():
 while True:
 print "I'm bar"
 yield

def sometask():
 ...
 t1 = yield NewTask(bar())

pyos5.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Killing Tasks

140

• More system calls
class KillTask(SystemCall):
 def __init__(self,tid):
 self.tid = tid
 def handle(self):
 task = self.sched.taskmap.get(self.tid,None)
 if task:
 task.target.close()
 self.task.sendval = True
 else:
 self.task.sendval = False
 self.sched.schedule(self.task)

• Example use:
def sometask():
 t1 = yield NewTask(foo())
 ...
 yield KillTask(t1)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

141

• An example of basic task control
def foo():
 mytid = yield GetTid()
 while True:
 print "I'm foo", mytid
 yield

def main():
 child = yield NewTask(foo()) # Launch new task
 for i in xrange(5):
 yield
 yield KillTask(child) # Kill the task
 print "main done"

sched = Scheduler()
sched.new(main())
sched.mainloop()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

142

• Sample output

I'm foo 2
I'm foo 2
I'm foo 2
I'm foo 2
I'm foo 2
Task 2 terminated
main done
Task 1 terminated

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Waiting for Tasks

143

• This is a more tricky problem...
def foo():
 for i in xrange(5):
 print "I'm foo"
 yield

def main():
 child = yield NewTask(foo())
 print "Waiting for child"
 yield WaitTask(child)

 print "Child done"

• The task that waits has to remove itself from
the run queue--it sleeps until child exits

• This requires some scheduler changes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting

144

class Scheduler(object):
 def __init__(self):
 ...
 self.exit_waiting = {}
 ...

 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 # Notify other tasks waiting for exit
 for task in self.exit_waiting.pop(task.tid,[]):
 self.schedule(task)

 def waitforexit(self,task,waittid):
 if waittid in self.taskmap:
 self.exit_waiting.setdefault(waittid,[]).append(task)
 return True
 else:
 return False

pyos6.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting

145

class Scheduler(object):
 def __init__(self):
 ...
 self.exit_waiting = {}
 ...

 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 # Notify other tasks waiting for exit
 for task in self.exit_waiting.pop(task.tid,[]):
 self.schedule(task)

 def waitforexit(self,task,waittid):
 if waittid in self.taskmap:
 self.exit_waiting.setdefault(waittid,[]).append(task)
 return True
 else:
 return False

This is a holding area for
tasks that are waiting.

A dict mapping task ID
to tasks waiting for exit.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting

146

class Scheduler(object):
 def __init__(self):
 ...
 self.exit_waiting = {}
 ...

 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 # Notify other tasks waiting for exit
 for task in self.exit_waiting.pop(task.tid,[]):

 self.schedule(task)

 def waitforexit(self,task,waittid):
 if waittid in self.taskmap:
 self.exit_waiting.setdefault(waittid,[]).append(task)
 return True
 else:
 return False

When a task exits, we
pop a list of all waiting

tasks off out of the
waiting area and
reschedule them.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting

147

class Scheduler(object):
 def __init__(self):
 ...
 self.exit_waiting = {}
 ...

 def exit(self,task):
 print "Task %d terminated" % task.tid
 del self.taskmap[task.tid]
 # Notify other tasks waiting for exit
 for task in self.exit_waiting.pop(task.tid,[]):
 self.schedule(task)

 def waitforexit(self,task,waittid):
 if waittid in self.taskmap:

 self.exit_waiting.setdefault(waittid,[]).append(task)

 return True

 else:

 return False

A utility method that
makes a task wait for

another task. It puts the
task in the waiting area.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting

148

• Here is the system call
class WaitTask(SystemCall):
 def __init__(self,tid):
 self.tid = tid
 def handle(self):
 result = self.sched.waitforexit(self.task,self.tid)
 self.task.sendval = result
 # If waiting for a non-existent task,
 # return immediately without waiting
 if not result:
 self.sched.schedule(self.task)

• Note: Have to be careful with error handling.

• The last bit immediately reschedules if the
task being waited for doesn't exist

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting Example

149

• Here is some example code:

def foo():
 for i in xrange(5):
 print "I'm foo"
 yield

def main():
 child = yield NewTask(foo())
 print "Waiting for child"
 yield WaitTask(child)
 print "Child done"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Waiting Example

150

• Sample output:

Waiting for child
I'm foo 2
I'm foo 2
I'm foo 2
I'm foo 2
I'm foo 2
Task 2 terminated
Child done
Task 1 terminated

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Design Discussion

151

• The only way for tasks to refer to other tasks
is using the integer task ID assigned by the the
scheduler

• This is an encapsulation and safety strategy

• It keeps tasks separated (no linking to internals)

• It places all task management in the scheduler
(which is where it properly belongs)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

152

• Running multiple tasks. Check.

• Launching new tasks. Check.

• Some basic task management. Check.

• The next step is obvious

• We must implement a web framework...

• ... or maybe just an echo sever to start.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Echo Server Attempt

153

def handle_client(client,addr):
 print "Connection from", addr
 while True:
 data = client.recv(65536)
 if not data:
 break
 client.send(data)
 client.close()
 print "Client closed"
 yield # Make the function a generator/coroutine

def server(port):
 print "Server starting"
 sock = socket(AF_INET,SOCK_STREAM)
 sock.bind(("",port))
 sock.listen(5)
 while True:
 client,addr = sock.accept()
 yield NewTask(handle_client(client,addr))

echobad.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Echo Server Attempt

154

def handle_client(client,addr):
 print "Connection from", addr
 while True:
 data = client.recv(65536)
 if not data:
 break
 client.send(data)
 client.close()
 print "Client closed"
 yield # Make the function a generator/coroutine

def server(port):
 print "Server starting"
 sock = socket(AF_INET,SOCK_STREAM)
 sock.bind(("",port))
 sock.listen(5)
 while True:
 client,addr = sock.accept()

 yield NewTask(handle_client(client,addr))

The main server loop.
Wait for a connection,
launch a new task to
handle each client.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Echo Server Attempt

155

def handle_client(client,addr):

 print "Connection from", addr

 while True:

 data = client.recv(65536)

 if not data:

 break

 client.send(data)

 client.close()

 print "Client closed"

 yield # Make the function a generator/coroutine

def server(port):
 print "Server starting"
 sock = socket(AF_INET,SOCK_STREAM)
 sock.bind(("",port))
 sock.listen(5)
 while True:
 client,addr = sock.accept()
 yield NewTask(handle_client(client,addr))

Client handling. Each
client will be executing

this task (in theory)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Echo Server Example

156

• Execution test
def alive():
 while True:
 print "I'm alive!"
 yield
sched = Scheduler()
sched.new(alive())
sched.new(server(45000))
sched.mainloop()

• Output
I'm alive!
Server starting
... (freezes) ...

• The scheduler locks up and never runs any
more tasks (bummer)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Blocking Operations

157

• In the example various I/O operations block

client,addr = sock.accept()
data = client.recv(65536)
client.send(data)

• The real operating system (e.g., Linux) suspends
the entire Python interpreter until the I/O
operation completes

• Clearly this is pretty undesirable for our
multitasking operating system (any blocking
operation freezes the whole program)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Non-blocking I/O

158

• The select module can be used to monitor a
collection of sockets (or files) for activity
reading = [] # List of sockets waiting for read
writing = [] # List of sockets waiting for write

Poll for I/O activity
r,w,e = select.select(reading,writing,[],timeout)

r is list of sockets with incoming data
w is list of sockets ready to accept outgoing data
e is list of sockets with an error state

• This can be used to add I/O support to our OS

• This is going to be similar to task waiting

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Step 6 : I/O Waiting

159

class Scheduler(object):
 def __init__(self):
 ...
 self.read_waiting = {}
 self.write_waiting = {}
 ...

 def waitforread(self,task,fd):
 self.read_waiting[fd] = task
 def waitforwrite(self,task,fd):
 self.write_waiting[fd] = task

 def iopoll(self,timeout):
 if self.read_waiting or self.write_waiting:
 r,w,e = select.select(self.read_waiting,
 self.write_waiting,[],timeout)
 for fd in r: self.schedule(self.read_waiting.pop(fd))
 for fd in w: self.schedule(self.write_waiting.pop(fd))
 ...

pyos7.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

class Scheduler(object):
 def __init__(self):
 ...
 self.read_waiting = {}
 self.write_waiting = {}

 ...

 def waitforread(self,task,fd):
 self.read_waiting[fd] = task
 def waitforwrite(self,task,fd):
 self.write_waiting[fd] = task

 def iopoll(self,timeout):
 if self.read_waiting or self.write_waiting:
 r,w,e = select.select(self.read_waiting,
 self.write_waiting,[],timeout)
 for fd in r: self.schedule(self.read_waiting.pop(fd))
 for fd in w: self.schedule(self.write_waiting.pop(fd))
 ...

Step 6 : I/O Waiting

160

Holding areas for tasks
blocking on I/O. These

are dictionaries mapping
file descriptors to tasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

class Scheduler(object):
 def __init__(self):
 ...
 self.read_waiting = {}
 self.write_waiting = {}
 ...

 def waitforread(self,task,fd):
 self.read_waiting[fd] = task

 def waitforwrite(self,task,fd):

 self.write_waiting[fd] = task

 def iopoll(self,timeout):
 if self.read_waiting or self.write_waiting:
 r,w,e = select.select(self.read_waiting,
 self.write_waiting,[],timeout)
 for fd in r: self.schedule(self.read_waiting.pop(fd))
 for fd in w: self.schedule(self.write_waiting.pop(fd))
 ...

Step 6 : I/O Waiting

161

Functions that simply put
a task into one of the

above dictionaries

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

class Scheduler(object):
 def __init__(self):
 ...
 self.read_waiting = {}
 self.write_waiting = {}
 ...

 def waitforread(self,task,fd):
 self.read_waiting[fd] = task
 def waitforwrite(self,task,fd):
 self.write_waiting[fd] = task

 def iopoll(self,timeout):
 if self.read_waiting or self.write_waiting:

 r,w,e = select.select(self.read_waiting,

 self.write_waiting,[],timeout)

 for fd in r: self.schedule(self.read_waiting.pop(fd))

 for fd in w: self.schedule(self.write_waiting.pop(fd))

 ...

Step 6 : I/O Waiting

162

I/O Polling. Use select() to
determine which file

descriptors can be used.
Unblock any associated task.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

When to Poll?

163

• Polling is actually somewhat tricky.

• You could put it in the main event loop
class Scheduler(object):
 ...
 def mainloop(self):
 while self.taskmap:
 self.iopoll(0)

 task = self.ready.get()
 try:
 result = task.run()

• Problem : This might cause excessive polling

• Especially if there are a lot of pending tasks
already on the ready queue

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Polling Task

164

• An alternative: put I/O polling in its own task
class Scheduler(object):
 ...
 def iotask(self):
 while True:
 if self.ready.empty():
 self.iopoll(None)
 else:
 self.iopoll(0)
 yield

 def mainloop(self):
 self.new(self.iotask()) # Launch I/O polls
 while self.taskmap:
 task = self.ready.get()
 ...

• This just runs with every other task (neat)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Read/Write Syscalls

165

• Two new system calls
class ReadWait(SystemCall):
 def __init__(self,f):
 self.f = f
 def handle(self):
 fd = self.f.fileno()
 self.sched.waitforread(self.task,fd)

class WriteWait(SystemCall):
 def __init__(self,f):
 self.f = f
 def handle(self):
 fd = self.f.fileno()
 self.sched.waitforwrite(self.task,fd)

• These merely wait for I/O events, but do not
actually perform any I/O

pyos7.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A New Echo Server

166

def handle_client(client,addr):
 print "Connection from", addr
 while True:
 yield ReadWait(client)

 data = client.recv(65536)
 if not data:
 break
 yield WriteWait(client)

 client.send(data)
 client.close()
 print "Client closed"

def server(port):
 print "Server starting"
 sock = socket(AF_INET,SOCK_STREAM)
 sock.bind(("",port))
 sock.listen(5)
 while True:
 yield ReadWait(sock)

 client,addr = sock.accept()
 yield NewTask(handle_client(client,addr))

All I/O operations are
now preceded by a
waiting system call

echogood.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Echo Server Example

167

• Execution test
def alive():
 while True:
 print "I'm alive!"
 yield
sched = Scheduler()
sched.new(alive())
sched.new(server(45000))
sched.mainloop()

• You will find that it now works (will see alive
messages printing and you can connect)

• Remove the alive() task to get rid of messages

echogood2.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Congratulations!

168

• You have just created a multitasking OS

• Tasks can run concurrently

• Tasks can create, destroy, and wait for tasks

• Tasks can perform I/O operations

• You can even write a concurrent server

• Excellent!

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 8

169

The Problem with the Stack

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Limitation

170

• When working with coroutines, you can't
write subroutine functions that yield (suspend)

• For example:
def Accept(sock):
 yield ReadWait(sock)
 return sock.accept()

def server(port):
 ...
 while True:
 client,addr = Accept(sock)

 yield NewTask(handle_client(client,addr))

• The control flow just doesn't work right

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Problem

171

• The yield statement can only be used to
suspend a coroutine at the top-most level

• You can't push yield inside library functions

def bar():
 yield

def foo():
 bar()

This yield does not suspend the
"task" that called the bar() function

(i.e., it does not suspend foo)

• Digression: This limitation is one of the things
that is addressed by Stackless Python

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Solution

172

• There is a way to create suspendable
subroutines and functions

• However, it can only be done with the
assistance of the task scheduler itself

• You have to strictly stick to yield statements

• Involves a trick known as "trampolining"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Trampolining

173

• Here is a very simple example:
A subroutine
def add(x,y):
 yield x+y

A function that calls a subroutine
def main():
 r = yield add(2,2)
 print r
 yield

• Here is very simpler scheduler code
def run():
 m = main()
 # An example of a "trampoline"
 sub = m.send(None)
 result = sub.send(None)

 m.send(result)

trampoline.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Trampolining

174

• A picture of the control flow

m.send(None) starts

yield add(2,2)sub

sub.send(None)

run() main() add(x,y)

starts

yield x+yresult

m.send(result) r
print r

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Trampolining

175

• A picture of the control flow

m.send(None) starts

yield add(2,2)sub

sub.send(None)

run() main() add(x,y)

starts

yield x+yresult

m.send(result) r
print r

This is the "trampoline".
If you want to call a subroutine,
everything gets routed through

the scheduler.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

176

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []
 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)
 if isinstance(result,SystemCall): return result
 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)
 self.sendval = None
 self.target = result
 else:
 if not self.stack: return
 self.sendval = result
 self.target = self.stack.pop()
 except StopIteration:
 if not self.stack: raise
 self.sendval = None
 self.target = self.stack.pop()

pyos8.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

177

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []

 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)
 if isinstance(result,SystemCall): return result
 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)
 self.sendval = None
 self.target = result
 else:
 if not self.stack: return
 self.sendval = result
 self.target = self.stack.pop()
 except StopIteration:
 if not self.stack: raise
 self.sendval = None
 self.target = self.stack.pop()

If you're going to have
subroutines, you first
need a "call stack."

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

178

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []
 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)

 if isinstance(result,SystemCall): return result

 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)
 self.sendval = None
 self.target = result
 else:
 if not self.stack: return
 self.sendval = result
 self.target = self.stack.pop()
 except StopIteration:
 if not self.stack: raise
 self.sendval = None
 self.target = self.stack.pop()

Here we run the task.
If it returns a "System

Call", just return (this is
handled by the scheduler)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

179

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []
 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)
 if isinstance(result,SystemCall): return result
 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)

 self.sendval = None

 self.target = result

 else:
 if not self.stack: return
 self.sendval = result
 self.target = self.stack.pop()
 except StopIteration:
 if not self.stack: raise
 self.sendval = None
 self.target = self.stack.pop()

If a generator is returned, it means
we're going to "trampoline"

Push the current coroutine on the
stack, loop back to the top, and call

the new coroutine.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

180

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []
 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)
 if isinstance(result,SystemCall): return result
 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)
 self.sendval = None
 self.target = result
 else:
 if not self.stack: return
 self.sendval = result

 self.target = self.stack.pop()

 except StopIteration:
 if not self.stack: raise
 self.sendval = None
 self.target = self.stack.pop()

If some other value is coming back,
assume it's a return value from a

subroutine. Pop the last coroutine
off of the stack and arrange to have

the return value sent into it.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Implementation

181

class Task(object):
 def __init__(self,target):
 ...
 self.stack = []
 def run(self):
 while True:
 try:
 result = self.target.send(self.sendval)
 if isinstance(result,SystemCall): return result
 if isinstance(result,types.GeneratorType):
 self.stack.append(self.target)
 self.sendval = None
 self.target = result
 else:
 if not self.stack: return
 self.sendval = result
 self.target = self.stack.pop()
 except StopIteration:
 if not self.stack: raise

 self.sendval = None

 self.target = self.stack.pop()

Special handling to deal with
subroutines that terminate. Pop

the last coroutine off the stack and
continue (instead of killing the

whole task)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Subroutines

182

• Blocking I/O can be put inside library functions

def Accept(sock):
 yield ReadWait(sock)
 yield sock.accept()

def Send(sock,buffer):
 while buffer:
 yield WriteWait(sock)
 len = sock.send(buffer)
 buffer = buffer[len:]

def Recv(sock,maxbytes):
 yield ReadWait(sock)
 yield sock.recv(maxbytes)

• These hide all of the low-level details.

pyos8.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Better Echo Server

183

def handle_client(client,addr):
 print "Connection from", addr
 while True:
 data = yield Recv(client,65536)
 if not data:
 break
 yield Send(client,data)
 print "Client closed"
 client.close()

def server(port):
 print "Server starting"
 sock = socket(AF_INET,SOCK_STREAM)
 sock.bind(("",port))
 sock.listen(5)
 while True:
 client,addr = yield Accept(sock)
 yield NewTask(handle_client(client,addr))

Notice how all I/O
operations are now

subroutines.

echoserver.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Comments

184

• This is insane!

• You now have two types of callables

• Normal Python functions/methods

• Suspendable coroutines

• For the latter, you always have to use yield for
both calling and returning values

• The code looks really weird at first glance

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines and Methods

185

• You can take this further and implement
wrapper objects with non-blocking I/O
class Socket(object):
 def __init__(self,sock):
 self.sock = sock
 def accept(self):
 yield ReadWait(self.sock)
 client,addr = self.sock.accept()
 yield Socket(client),addr
 def send(self,buffer):
 while buffer:
 yield WriteWait(self.sock)
 len = self.sock.send(buffer)
 buffer = buffer[len:]
 def recv(self, maxbytes):
 yield ReadWait(self.sock)
 yield self.sock.recv(maxbytes)
 def close(self):
 yield self.sock.close()

sockwrap.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Final Echo Server

186

def handle_client(client,addr):
 print "Connection from", addr
 while True:
 data = yield client.recv(65536)
 if not data:
 break
 yield client.send(data)
 print "Client closed"
 yield client.close()

def server(port):
 print "Server starting"
 rawsock = socket(AF_INET,SOCK_STREAM)
 rawsock.bind(("",port))
 rawsock.listen(5)
 sock = Socket(rawsock)

 while True:
 client,addr = yield sock.accept()
 yield NewTask(handle_client(client,addr))

Notice how all I/O
operations now mimic
the socket API except

for the extra yield.

echoserver2.py

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Interesting Twist

187

• If you only read the application code, it has
normal looking control flow!

while True:
 data = yield client.recv(8192)
 if not data:
 break
 yield client.send(data)
yield client.close()

while True:
 data = client.recv(8192)
 if not data:
 break
 client.send(data)

client.close()

Coroutine Multitasking Traditional Socket Code

• As a comparison, you might look at code that
you would write using the asyncore module
(or anything else that uses event callbacks)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Twisted

188

• Here is an echo server in Twisted (straight
from the manual)

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class Echo(Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

def main():
 f = Factory()
 f.protocol = Echo
 reactor.listenTCP(45000, f)
 reactor.run()

if __name__ == '__main__':
 main()

An event callback

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 9

189

Some Final Words

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Further Topics

• There are many other topics that one could
explore with our task scheduler

• Intertask communication

• Handling of blocking operations (e.g.,
accessing databases, etc.)

• Coroutine multitasking and threads

• Error handling

• But time does not allow it here

190

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Little Respect

• Python generators are far more powerful
than most people realize

• Customized iteration patterns

• Processing pipelines and data flow

• Event handling

• Cooperative multitasking

• It's too bad a lot of documentation gives little
insight to applications (death to Fibonacci!)

191

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance
• Coroutines have decent performance

• We saw this in the data processing section

• For networking, you might put our coroutine
server up against a framework like Twisted

• A simple test : Launch 3 subprocesses, have each
open 300 socket connections and randomly blast
the echo server with 1024 byte messages.

192

Twisted 420.7s
Coroutines 326.3s
Threads 42.8s

Note : This is only one
test. A more detailed
study is definitely in order.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines vs. Threads

• I'm not convinced that using coroutines is
actually worth it for general multitasking

• Thread programming is already a well
established paradigm

• Python threads often get a bad rap (because
of the GIL), but it is not clear to me that
writing your own multitasker is actually better
than just letting the OS do the task switching

193

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Risk

• Coroutines were initially developed in the
1960's and then just sort of died quietly

• Maybe they died for a good reason

• I think a reasonable programmer could claim
that programming with coroutines is just too
diabolical to use in production software

• Bring my multitasking OS (or anything else
involving coroutines) into a code review and
report back to me... ("You're FIRED!")

194

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Keeping it Straight
• If you are going to use coroutines, it is critically

important to not mix programming paradigms
together

• There are three main uses of yield

• Iteration (a producer of data)

• Receiving messages (a consumer)

• A trap (cooperative multitasking)

• Do NOT write generator functions that try to
do more than one of these at once

195

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Handle with Care

• I think coroutines are like high explosives

• Try to keep them carefully contained

• Creating a ad-hoc tangled mess of coroutines,
objects, threads, and subprocesses is probably
going to end in disaster

• For example, in our OS, coroutines have no
access to any internals of the scheduler, tasks,
etc. This is good.

196

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Links

197

• Some related projects (not an exhaustive list)

• Stackless Python, PyPy

• Cogen

• Multitask

• Greenlet

• Eventlet

• Kamaelia

• Do a search on http://pypi.python.org

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thanks!

198

• I hope you got some new ideas from this class

• Please feel free to contact me

http://www.dabeaz.com

• Also, I teach Python classes (shameless plug)

