1. Which equation below represents the quadratic formula?

*a.
$$[-b\pm b^2-4ac]/[2a] = x$$

b.
$$a^2+b^2=c^2$$

C.
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos[n\pi x] / [L] + b_n \sin[n\pi x] / [L])$$

2. Which of the following represents a set of parallel lines?

- a. Option one
- b. Option two
- *c. Option three

3. What is the definition of an obtuse angle?

- *a. an angle $\it greater\ than\ 90^\circ$
- b. an angle *equal to* 90°
- c. an angle *less than* 90°

4. Which formula below represents the area of a circle?

*b.
$$A = \pi r^2$$

c.
$$A=\pi^2 r$$

d. A=
$$\sqrt{\pi}$$

5. What geometric term is represented by the image below?

a. a corner

*b. a cross-section

c. the circumference

d. the perimeter

11. Using the data in the table below, calculate the mean, or average, number of points scored by Player B.

	Game 1	Game 2	Game 3	Game 4	Game 5
Player A	13	12	9	11	13
Player B	12	11	15	20	12

*a. 14

b. 11.5

c. 13

d. 13.67

6. This instrument is commonly used by surveyors. It measures horizontal and vertical angles to determine the location of a point from other known points at either end of a fixed baseline, rather than measuring distances to the point directly. What is it called?

a. triangulator

b. binocular

c. tripod

*d. theodolite

7. What is the name of the missing shape in the flowchart below?

- a. Acute
- b. Obtuse
- *c. Isosceles
- d. Right
- 8. What category includes all of the items on the list below?
 - . Square
 - . Rectangle
 - . Rhombus
 - . Parallelogram
 - . Trapezoid
 - . Pentagon
- a. Quadrilaterals
- b. Triangles
- c. Ellipses
- *d. Polygons
- 9. Determine the area of the shaded portion in the diagram below.

- ABCD is a square ABCD touches the circle at 4 points The length of one side of the square ABCD is 2 cm

*b.
$$2\pi - 4$$

c.
$$3\pi^2 - 4$$

c.
$$3\pi^2 - 4$$

d. $4\pi^3 - 4$
e. $5\pi - 4$

$$e^{-5\pi} - 4$$