1. Which equation below represents the quadratic formula?
*a. $\left[-b \pm b^{2}-4 a c\right] /[2 a]=x$
b. $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
c. $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{a}_{\mathrm{n}} \cos [\mathrm{n} \pi \mathrm{x}] /[\mathrm{L}]+\mathrm{b}_{\mathrm{n}} \sin [\mathrm{n} \pi \mathrm{x}] /[\mathrm{L}]\right)$
2. Which of the following represents a set of parallel lines?
a. Option one ()
b. Option two
*c. Option three

3. What is the definition of an obtuse angle?
*a. an angle greater than 90°
b. an angle equal to 90°
c. an angle less than 90°
4. Which formula below represents the area of a circle?
a. $A=2 \pi r$
*b. $A=\pi r^{2}$
c. $A=\pi^{2} r$
d. $A=\sqrt{ } \pi$
5. What geometric term is represented by the image below?

a. a corner
*b. a cross-section
c. the circumference
d. the perimeter
6. Using the data in the table below, calculate the mean, or average, number of points scored by Player B.

	Game 1	Game 2	Game 3	Game 4	Game 5
Player A	13	12	9	11	13
Player B	12	11	15	20	12

*a. 14
b. 11.5
c. 13
d. 13.67
6. This instrument is commonly used by surveyors. It measures horizontal and vertical angles to determine the location of a point from other known points at either end of a fixed baseline, rather than measuring distances to the point directly. What is it called?

a. triangulator
b. binocular
c. tripod
*d. theoodolite
7. What is the name of the missing shape in the flowchart below?

a. Acute
b. Obtuse
*c. Isosceles
d. Right
8. What category includes all of the items on the list below?

- Square
- Rectangle
. Rhombus
- Parallelogram
- Trapezoid
- Pentagon
a. Quadrilaterals
b. Triangles
c. Ellipses
*d. Polygons

9. Determine the area of the shaded portion in the diagram below.

$A B C D$ is a square
ABCD touches the circle at 4 points
The length of one side of the square $A B C D$ is 2 cm
a. $\pi-4$
*b. $2 \pi-4$
c. $3 \pi^{2}-4$
d. $4 \pi^{3}-4$
e. $5 \pi-4$
